рефераты скачать

МЕНЮ


Законы сохранения механики


9. Определить среднее значение угла aср


aср=(SсрS0)/lґ.


10. Для каждого значения рассчитать скорость пули V по формуле (9). Значения 1, m1, m2 указаны на установке.

11. Рассчитать погрешность DV/V по формуле

(DV/V)={(Da/a)2+(Dm1/ m1)2+0.25[(Dl/l)2+ +((2m2+5m3)2Dm22+ (5m2+12m3)2 Dm32) / (m22+5m2m3+m32)]}1/2.


Убедиться, что погрешность Dg/g мала по сравнению с остальными относительными погрешностями.

12. Записать окончательный результат в виде


V=(V±DV).



Дополнительное задание: по данным эксперимента определить потери механической энергии при абсолютно неупругом ударе.

Контрольные вопросы

1.Сформулируйте закон сохранения момента импульса и закон сохранения энергии для баллистического маятника.

2.Дайте определение моменту инерции абсолютно твердого тела относительно оси. Каков его физический смысл?

3.Сформулируйте теорему Гюйгенса – Штейнера.

4.Напишите формулу для периода колебаний маятника (математического, физического, пружинного).

5.Объясните суть метода измерения скорости полета снаряда при помощи физического маятника. Получите формулу для скорости снаряда.

6.Увеличится или уменьшится угол отклонения маятника, если удар вместо абсолютного неупругого считать абсолютно упругим? Пояснить.


Лабораторная работа №3

ЛАБОРАТОРНАЯ УСТАНОВКА «МАХОВИК»

Цель работы: лабораторная установка предназначена для иллюстрации законов динамики: второго закона Ньютона и основного уравнения динамики вращательного движения, а также закона сохранения полной механической энергии.

При работе на данной установке определяется момент инерции маховика и оценивается потеря механической энергии на трение.

Приборы и принадлежности: лабораторная установка «Маховик»:

габаритные размеры – не более 400x350x350 мм

масса – не более 30 кг

Состав изделия и комплект поставки:

– маховик со шкивом на подставке – 1 шт.

– груз с нитью – 1 шт.

Устройство и принцип работы

Установка представляет собой горизонтально расположенный вал 1 (рис. 3), закрепленный на основании 2, на котором расположены массивный маховик 3 и два шкива различного диаметра 4. При выполнении лабораторной работы на один из шкивов наматывается нить, на которой закреплен груз 5. Для закрепления нити на шкивах предусмотрены штыри 6.

Момент инерции определяется по результатам измерения времени падения груза с высоты Н. В рабочем положении установка располагается на краю лабораторного стола так, чтобы груз мог опускаться вниз до пола. Для выполнения работы на установке необходимы дополнительные измерительные приборы: штангенциркуль, секундомер и линейка.

Вывод расчетных формул

Для вывода расчетной формулы используем закон изменения полной механической энергии для системы, в которой действуют диссипативные силы: dW = dАдис. Рассматриваемая механическая система состоит из груза массой m и маховика со шкивом и валом с моментом инерции I. В тот момент, когда груз поднят над полом на высоту Н, система обладает потенциальной энергией mgH. При падении груза потенциальная энергия превращается в кинетическую груза и маховика. Изменение полной механической энергии за время падения груза равно работе силы трения:


mv2/2+ I w2/2 – mgH = А1, (1)


где A1 – работа силы трения за n1 оборотов маховика. Силу трения можно считать постоянной. Тогда движение груза можно считать равноускоренным и описать его уравнениями


v = at; H = gt2/2 ;(2)


из этих уравнений получается

v = 2Н/t; (3)


угловая скорость вращения маховика

w=2H/rt, (4)


где а – линейное ускорение груза;

v – его скорость непосредственно перед ударом о пол;

w – угловая скорость маховика в тот же момент времени;

t – время падения груза до пола;

r – радиус шкива.

Для определения момента инерции маховика необходимо найти работу силы трения за время падения груза. Если сила трения постоянна, то ее работа пропорциональна числу оборотов маховика. Тогда работу силы трения за время падения груза можно выразить как А1= сn1, а работу силы трения от момента соприкосновения груза и пола до полной остановки маховика А2=сn2, где n2 – число оборотов до полной остановки маховика. С другой стороны, А2 равна изменению кинетической энергии маховика 0 – Iw2/2=А2=сn2, откуда получаем


с = Iw2/2n2

и А1 = – n1w2/2n2 . (5)


Выраженную таким образом работу Ai подставим в равенство (1):

(mv2/2 + Iw2/2) – mgH = – n1I w2/2n2.

После замены v и w в соответствии с формулами (3) и (4) получаем значение момента инерции:


I = mr2(gt2 – 2Н)/ 2Н(1 + n1/n2).                                                        (6)


Так как r=d/2 и в нашей работе gt2?2H, окончательно получаем:


I=md2gt2/8H(1+n1/n2). (7)

Порядок выполнении работы

1. Штангенциркулем пять раз измерить диаметры шкивов и записать результаты в таблицу 1.

2. Надеть петлю, имеющуюся на свободном конце нити, привязанной к грузу, на штырь шкива. Вращая маховик, поднять груз на высоту Н. Высоту следует выбрать так, чтобы она соответствовала целому числу оборотов n1. Для этого при нижнем положении груза (груз чуть касается пола, нить натянута) на маховике мелом наносят горизонтальную черту. За этой чертой нужно следить при наматывании нити на шкив.

3.Измерить высоту поднятия груза над полом при помощи вертикально поставленной линейки.

4.Отпустить маховик, одновременно включив секундомер. Остановить секундомер в момент удара груза об пол. Результат записать в таблицу 2.

5.Подсчитать число оборотов n2 от момента удара груза об пол до полной остановки маховика. Опыты 3, 4, 5 повторить 5 раз.

6.Повторить измерения, наматывая нить на другой шкив. Записать результаты в табл. 3.

Таблицы результатов измерений

1. Данные установки: m = (600 ± 1) г.

2. Измерение Н и n1:

при намотке нити на первый шкив: H1 =...., DH1 =..., n11=...,

при намотке на второй шкив: Н2 =..., DH2 =..., n12=....

3. Измерение диаметров шкивов:


Таблица 1

№ опыт

d1 мм

Dd1 мм

d2, мм

Dd2, мм






Среднее






4. Измерение t и n2 для первого шкива:

Таблица 2

№ опыта

t1,c

Dt1, с

n21

Dn21












для второго шкива


Таблица 3

№ опыта

t2, с

Dt2, с

n22

Dn22











Обработка результатов измерений

1. В конце каждой таблицы рассчитать средние значения измеренных величин и случайные погрешности измерений.

2. По формуле (7) рассчитать момент инерции маховика для измерений с первым и вторым шкивами.

3. Рассчитать погрешность I для одного из случаев по формуле:


(DI/I)2=(Dm/m)2+ 4(Dd/d)2 + 4(Dt/t)2 + (DН/Н)2 +..+(Dn2/n2)2n12/(n1+n2)2.

4. Сравнить результаты расчетов I при работе с первым и вторым шкивами. Дополнительное задания: рассчитать силы натяжения нити, моменты этих сил при работе с первым и вторым шкивами. Показать, что отношение моментов приближенно равно отношению диаметров шкивов и равно отношению ускорений, с которыми движется груз в первом и втором случаях. Определить потери механической энергии при движении груза от верхней точки до момента удара об пол.

Контрольные вопросы

1.Сформулируйте основной закон динамики вращательного движения в дифференциальной форме.

2.Что называется моментом инерции материальной точки и твердого тела относительно оси? В каких единицах он измеряется?

3.От чего зависит значение момента инерции данного тела?

4.Как читается теорема Гюйгенса – Штейнера?

5.Вывести формулу для натяжения нити Т.

6.Какой закон положен в основу вывода рабочей формулы? Вывести формулу.

7.Момент каких сил вызывает вращение маятника?

8.Выведите формулу для определения момента инерции:

а) тонкого стержня относительно его середины;

б) тонкого кольца;

в) тонкого диска.


Лабораторная работа №4

ЛАБОРАТОРНАЯ УСТАНОВКА «НАКЛОННАЯ ПЛОСКОСТЬ»


Цель работы: установка предназначена для изучения законов динамики поступательного и вращательного движения при движении тел по наклонной плоскости, определения коэффициента трения скольжения и иллюстрации теоремы об изменении кинетической энергии.

Приборы и принадлежности: секундомер, линейка, установка «Наклонная плоскость»:

габаритные размеры – не более 870´180´180 мм

масса – не более 12 кг

Состав изделия и комплект поставки:

1.Основание – 1шт.

2.Стойка – 1шт.

3.Наклонная плоскость с узлом крепления – 1 шт.

4.Коробка со сменными грузами m1=(189,3±0,1)г – 1 шт.

5.Груз на нити m2 – 1шт.

6.Дополнительные грузы – 2 шт.

Устройство и принцип работы

Установка (рис. 4) состоит из наклонной плоскости 1 представляющей собой профиль, по дну которого скользит коробка с грузом. На одном из концов наклонной плоскости закреплен невесомый блок 2 (шлифованая ось), на другом – массивный шкив 3. Коробка с грузом m1 перемещается между фиксаторами 4 и 5. Наклонная плоскость закреплена на штативе 6, позволяющем изменять высоту наклонной плоскости над уровнем стола, а также изменять угол наклона плоскости относительно горизонта. Установка комплектуется набором грузов m2 (7) для рассмотрения движения связанных тел. Для эксплуатации установки требуется секундомер.

Вывод расчетных формул

Поступательное движение грузов m1 и m2 можно описать с помощью второго закона Ньютона. Для груза m1 уравнения второго закона Ньютона в проекциях на оси х и у (рис. 4) выглядят так:


Fтр – T1 + m1gsina = – m1a1,(1)

N – m1g cosa = 0 (2)

Для груза m2 закон Ньютона в проекции на ось у дает


Т2 – m2 g = – m2a2.(3)

Полагая, что скольжение нити по оси 2 происходит без трения, а сама нить невесома, можно записать: Т1 = Т2 = Т, а1 = а2 = а. В этом случае решение системы уравнений (1), (2), (3) дает значение ускорения, с которым движутся грузы m1 и m2:

а =(m2g – m1gsinamm1g cosa)/ (m1 +m2). (4)


При некотором критическом значении угла наклона плоскости aкр система двух грузов может двигаться равномерно, т. е. а = 0. Следовательно, из соотношения (4) можно определить величину коэффициента трения скольжения:


m= tg aкрm2/m1 соs aкр .(5)


Если тело m1 не соединено нитью с телом m2 (m2 = 0), то


а = g(sina – mm1g cosa) (6)

и m = tg aкр.(7)


Следовательно, построив график зависимости а = f(tg a), можно экстраполяцией найти m = tg aкр.

С другой стороны, зная значения m и а, можно определить работу всех сил, действующих на тела системы, и проверить теорему об изменении кинетической энергии. Для упрощения задачи рассмотрим движение только тела m1. Для него запишем теорему


DWK = Aвсех сил ,(8)

где DWK = mv2/2. (9)


Работа всех сил, действующих на тело m1:


AT = m2 (g – а)l,

Amgl = - m1gl sina,

Aтр = -m m1gl cosa .(10)


Следовательно, можно произвести проверку соотношения (8). При этом опытным путем определяются


a = 2l/t2, (11)

v = 2l/t (12)

и m по формуле (5).

Подготовка изделия к работе

1. Закрепить стойку на основании.

2. Закрепить на стойке наклонную плоскость.

3. Поместить установку на горизонтальную поверхность.

Порядок выполнения работы

1.Установить с помощью винта 8 (рис. 4) угол наклона плоскости a1, при котором груз m1 начинает двигаться вниз с минимальным ускорением.

2.Переместить груз m1 в верхнее положение и закрепить его фиксатором 4.

3.Отпустить фиксатор и одновременно включить секундомер. В момент касания грузом фиксатора 5 выключить секундомер. Время движения груза записать в таблицу 1.(При использовании электронных часов запуск и остановка секундомера происходит автоматически при пересечении грузом соответствующих датчиков.)

4.Измерить расстояние, пройденное грузом (1).

5.Повторить измерения не менее 5 раз.

6.Повторить п.п. 2 – 5 для пяти различных значений угла наклона a.


Таблица 1

№ опыта

a, град

t,c

t cp,c

а, м/с2

tga
































7. Соединить нитью грузы m1 и m2, при этом нить пропустить через отверстие в фиксаторе 4.

8. Установить груз m1 на наклонной плоскости, перекинуть нить через ось 2 так, чтобы груз свободно висел на нити.

9. Установить угол a наклонной плоскости, при котором система двигается равноускоренно.

10. Переместить груз m1 в нижнее положение на наклонной плоскости (рис. 4) и закрепить фиксатором.

11. Отпустить фиксатор и одновременно включить секундомер. В момент касания грузом верхнего фиксатора выключить секундомер. Измерить расстояние, пройденное грузом.

12. Величины 1, t и а записать в таблицу 2.


Таблица 2 l =..., a =..., m1 =..., m2 =....

№ опыта

t, с

Dt, с

1



2



3



4



5



Среднее




13. Задания пунктов 10 – 12 повторить 5 раз.

Обработка результатов измерений

1.По формуле (11) рассчитать ускорение груза m1 вниз по наклонной плоскости для каждого значения угла a.

2.Построить график зависимости ускорения от угла наклона.

3.Определить по графику величину tgaкр экстраполяцией графика.

4.Рассчитать значение скорости движения грузов m1 и m2 в момент касания верхнего фиксатора грузом m1 по формуле (12) и по данным таблицы 2.

5.Рассчитать изменение кинетической энергии тела m1 при его движении по наклонной плоскости.

6.Определить работу всех сил, действующих на груз m1 при его движении по наклонной плоскости, по формуле (10).

7.Сравнить величины.


DW = m1v2/2 и Авсех сил = At + Amlg + AFтр


8. Определить абсолютную погрешность DWK и А всех сил

Контрольные вопросы

1.Запишите основной закон динамики поступательного движения в дифференциальной форме.

2.Запишите систему уравнений, описывающих динамику движения груза по наклонной плоскости.

3.Получите формулу (4).

4.В чем заключается явление трения?

5.Какие виды трения вы знаете, какие причины вызывают трение?

6.Получите формулу для расчета погрешности косвенного измерения DW и Авсех сил.

7.Как изменится система уравнений, если учитывать массу ролика?


Лабораторная работа №5

ОПРЕДЕЛЕНИЕ ОБЪЁМА И ПЛОТНОСТИ ТЕЛА, ВЫЧИСЛЕНИЕ ПОГРЕШНОСТЕЙ

Цель работы: Ознакомление с методами измерения линейных размеров, объёмов тел, их масс и плотностей материалов. Определение погрешностей измерений.

Приборы и принадлежности: микрометр, штангенциркуль, детали для измерения, весы и разновесы.

Нониусом называется дополнение к обычному масштабу (линейному или круговому), позволяющее повысить точность измерения.

Страницы: 1, 2, 3, 4


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.