рефераты скачать

МЕНЮ


Средства учета количества электричества и электрической энергии


где τ=R4C1– постоянная времени интегратора. Выбрав величину R4, согласно рекомендации приведенной выше, определим емкость интегратора

C = tИНТ /R. (4.12)


Если на вход интегратора подать ступенчатый сигнал, амплитуда которого на протяжении некоторого времени будет постоянна, то в процессе интегрирования можно точно определить изменение выходного напряжения во времени, которое представляет собой наклонную прямую с полярностью, противоположной полярности входного сигнала.

UВЫХ = -(1/R4C1)òUВХdt = -(1/R4C1)(UВХ×t) (4.13)


Исследуемое устройство является интегрирующим с переменным временем интегрирования. В таких приборах, как известно, для улучшения помехоподавления и устранения погрешностей от наводок с частотой питания 50 Гц время цикла измерения, т.е. время интегрирования, выбирается равным или кратным 20 мс tИ » ТС = 0,02 с.

Размах напряжения на выходе интегратора желательно выбрать в рекомендованном диапазоне ±1,2 В, т.е. Um = 2,4 В. Величина входного напряжения Uвх= 1,2 В, величина сопротивления R4 =10 кОм. Проинтегрируем в пределах от t0 = 0 до t1 = ТС = 20 мс.

Из выражения (4.13) находим величину постоянной времени интегрирования

R4C1=(UВХ×tИ) / UВЫХ = (1,2×0,02)/2,4 = 10×10-3с, (4.14)


а далее величину емкости

C1 = R4C1 / R4 =10×10-3/10×103=1×10-6Ф =1,0 мкФ (4.15)

dЛ2=100fср.инт/f1=100*16/5*10-6=0,00032%, (4.16)

где fср.инт = 1/(2pRC)=1/2p *10*103*10-6=16 Гц – частота среза RC-цепи.

dЛΣ=dЛ1+dЛ2=0,005+0,00032=0,00532% (4.17)


Погрешность, возникающая вследствие неточности применяемых резисторов и конденсаторов. В качестве конденсатора С1 выбираем К31-10 с допуском по емкости 0,01% ТКЕС=10-6 1/ºС.

dRC=dR4+TKCR4*ΔT*100+dC1+TKEC1*ΔT*100=

=0,05+5*10-6*5*100+0,01+10-6*5*100=0,063% (4.18)


Сумарная мультипликативная погрешность

dмульт=dЛΣ+dRC=0,00532+0,063=0,06832% (4.19)


Рассчитаем аддитивные погрешности интегратора. Погрешность, вызванная дрейфом нуля усилителя dТКе0

dТКе0=ТКе0*ΔТ*100/Uвх.макс=50*10-6*5*100/10=0,025% (4.20)


Аддитивная погрешность, вызванная неидеальностью источника питания

dКВНПе0=КВНПе0*ΔЕпит*100/Uвх=10-5*0,5*100/10=0,00005% (4.21)


Суммарная аддитивная погрешность

dадд=dТКе0+dКВНПе0=0,0025+0,00005=0,00255% (4.22)


Результирующая погрешность интегратора складывается из суммы мультипликативных и аддитивных погрешностей

dΣ=dмульт+dадд=0,06832+0,00255=0,07087% (4.23)


Следует выделить следующие основные возможности повышения точности работы интегратора [41]:

использование ОУ с малыми значениями UCM, IBX и DIBX;

применение внешних цепей компенсации UCM, IBX и DIBX;

ограничение максимального времени интегрирования;

использование внешних цепей принудительного обнуления интегратора;

шунтирование интегрирующего конденсатора сопротивлением.

Как известно [42], смещение нуля операционного усилителя вызывается неидентичностью двух его входов, поэтому в качестве одной из мер по уменьшению ошибки интегрирования для компенсации составляющей погрешности IBX необходимо в цепь неинвертирующего входа ОУ (рисунок 2.6) установить корректирующее сопротивление, величина которого должна быть выбрана из условия


RKOP = R1ROC/(R1 + ROC).


При условии компенсации только составляющей IBX наличие ЭДС смещения нуля и его дрейф приводят к появлению на выходе интегратора сигнала ошибки UОШ, достигающего за время интегрирования tИ значения

UОШ = UCM + (UCM/RC)tИ + (DIBX/С)tИ (4.24)


Следует отметить, что с целью повышения точности измерений в большинстве современных аналого-цифровых измерительных приборов, в основном, цифровыми средствами, периодически производятся операции коррекции нуля выходного напряжения интегрирующих усилителей при закороченных входах. [24]. Погрешность от наличия напряжения дрейфа усилителей может быть достаточно большой, поэтому, зачастую, между циклами преобразования вводится такт автоматической коррекции дрейфа, которая выполняется путем запоминания напряжения смещения на дополнительном конденсаторе и последующего вычитания запомненного напряжения из входного напряжения усилителя [34]. Благодаря такому воздействию погрешность от наличия напряжения дрейфа усилителей снижается более чем на порядок.

Найдем погрешность, вносимую компаратором. В качестве операционного усилителя в компараторе выбираем микросхему К140УД17, параметры которой представлены в таблице 4.3.


Таблица 4.3 – Параметры микросхемы К140УД17

Тип микросхемы

К140УД17

K, тыс.

150

±Uп, В

3-18

Iп, мА

5

±eсм, мВ

0.25

TKeсм, мкВ/К

1.3

Iвх, нА

10

∆iвх, нА

5

±Uдр, В

15

±Uсф, В

13

M`сф, дБ

100

f1, МГц

0.4

v, В/мкс

0.1

±Uвых, В

12

Rн, кОм

2


Выбираем резистор R7=10 кОм типа С2-29В с допуском по сопротивлению 0,05% и ТКС=5*10-6 1/ºC. Резистор R6 выбираем исходя из рекомендуемого соотношения (R6+R7)/R6=6/1. Тогда намечаем R6=2,2 кОм типа С2-29В с с допуском по сопротивлению 0,05% и ТКС=5*10-6 1/ºC.

Погрешность компаратора определяется формулой

dкомп=Uвр/Uпор (4.25)


где Uпор - напряжение срабатывания компаратора


Uпор=е0+iвхR7R6/(R7+R6)+100TKE0*ΔT+100*TKiвх *ΔT *R7R6/(R7+R6)=

=0,25*10-3+10*10-9*10*103*2,2*103/(10*103+2,2*103)+100*1,3*10-6*5+

+100*50*10-6*5*10*103*2,2*103/(10*103+2,2*103)=0,000451% (4.26)


Тогда погрешность компаратора

dкомп=100Uвр/Uпор=100*0,000451/1,2=0,0375% (4.27)


В итоге результирующая погрешность квантователя по вольт-секундной площади по цепи “инвертор – аналоговый ключ – интегратор - компаратор”

dквант=dинв+dАК+dинт+dкомп=0,14559+0,1+0,07087+0,0375=0,35387% (4.28)


Поскольку из цепи “повторитель напряжения – аналоговый ключ – интегратор - компаратор ” ранее не была рассчитана лишь погрешность повторителя напряжения, то вычислим ее.

Повторитель напряжения является частным случаем неинвертирующего усилителя, т.е. усилителем с коэффициентом ООС β и коэффициентом усиления Ки, равным единице. Для его построения достаточно выход ОУ непосредственно соединить с И-входом, а на Н-вход подать входной сигнал. Тогда R2=0, R1=∞. Повторитель напряжения применяется в тех случаях, когда необходимо повысить входное сопротивление или снизить выходное сопротивление некоторого электронного узла. В качестве операционного усилителя в повторителе напряжения выберем К544УД2, параметры которого представлены в таблице 4.1. Вычислим мультипликативные погрешности. Погрешность некомпенсации


δнк=100/(1+К0β)=100/(1+20000*1)=0,00499% (4.29)


Синфазная помеха


δсс=10-mсс/20*100%=10-70/20*100%=0,0316% (4.30)


Суммарная мультипликативная погрешность повторителя напряжения


δмульт= δнк+ δсс=0,00499+0,0316=0,03659% (4.31)


Проведем расчет аддитивных погрешностей.

Составляющая от входного тока


δiвх=100iвхRвых=0,5*10-9*3*103*100=0,00015% (4.32)


Погрешность, вызванная дрейфом нуля усилителей dТКе0

dТКе0=ТКе0*ΔТ*100/Uвх.макс=50*10-6*5*100/10=0,025% (4.33)


Аддитивная погрешность, вызванная неидеальностью источника питания

dКВНПе0=КВНПе0*ΔЕпит*100/Uвх=300*10-6*0,5*100/10=0,0015% (2.53)


Суммарная аддитивная погрешность

dадд=diвх+dТКе0+dКВНПе0=0,00015+0,0025+0,0015=0,00415% (4.34)


Результирующая погрешность повторителя напряжения

dΣ=dмульт+dадд=0,03659+0,00415=0,04074% (4.35)


В итоге результирующая погрешность квантователя по вольт-секундной площади по цепи “повторитель напряжения – аналоговый ключ – интегратор - компаратор”

dквант=dповт+dАК+dинт+dкомп=0,04074+0,1+0,07087+0,0375=0,24911% (4.36)


Поскольку погрешность квантователя по цепи “инвертор – аналоговый ключ – интегратор - компаратор” (dквант=0,35387%) превышает погрешность по цепи “повторитель напряжения – аналоговый ключ – интегратор - компаратор” (dквант=0,24911%), то за погрешность квантователя принимаем именно ее значение.


4.2 Определение погрешности устройства дозирования количества электричества

Измерения количества электричества необходимо производить в широких пределах: от измерения количества электричества в кратковременных импульсах тока (единицы милликулон) до измерения количества электричества, протекающего в течение длительного времени (до 1011 Кл). Допускаемая погрешность измерения количества электричества должна находится в пределах ±(0,1-5)%.


Рисунок 4.1 – Устройство дозирования количества электричества.


Поскольку погрешность, вносимая квантователем по вольт-секундной площади была посчитана ранее (см. раздел 4.1), то для определения погрешности дозирования количества электричества в целом нам необходимо рассчитать лишь погрешности, вносимые дифференциальным усилителем, так как прочие элементы схемы дозатора (счетчик импульсов, блок индикации, блок задания дозы и т.д.) не вносят погрешности. Погрешность блока сравнения определяется временем задержки срабатывания этого устройства. Это время весьма незначительно (примерно 10 нс). За столь короткий промежуток времени в электрохимическую установку поступит очень незначительное количество электричества. В связи с этим погрешностью, вносимой этим устройством, можно пренебречь.

Найдем сначала мультипликативные погрешности дифференциального усилителя. Определим погрешность некомпенсации


dнк=100/(1+К0b)=100/(1+70000*0,0909)=0,016% (4.37),


где b=1/(1+R2/R1)=1/(1+10)=0,0909 – коэффициент обратной связи усилителя.

Погрешность от синфазного сигнала


dсс=10-mcc/20100=10-70/20100=0,0316% (4.38)


Погрешность, возникающая вследствие неточности используемых резисторов. В качестве резистора R1=1 кОм выбираем С2-29В с допуском по сопротивлению 0,05% и ТКС=5*10-6 1/ºC. В качестве резистора R2=10 кОм также выбираем С2-29В с допуском по сопротивлению 0,05% и ТКС=5*10-6 1/ºC. Тогда


δR=δR1+δR2+(ТКСR1+ТКСR2)ΔT*100%=0,05+0,05+(5*10-6+5*10-6)5*100%=0,105% (4.39)


Суммарная мультипликативная погрешность дифференциального усилителя равна


δмулт=δнк+δсс+ δR=0,016+0,0316+0,105=0,1526% (4.40)


Остальные неидеальности дифференциального усилителя устраняются применением цепей коррекции.

Таким образом результирующая погрешность дифференциального усилителя равна мультипликативной погрешности δдиф.ус=0,1526%.

Для того чтобы определить итоговую погрешность устройства дозирования количества электричества просуммируем погрешности дифференциального усилителя и квантователя по вольт-секундной площади


δдоз.КЭ=δквант+δдиф.ус=0,35387+0,1526=0,50647% (4.41)

4.3 Определение погрешности устройства дозирования электрической энергии


Рисунок 4.2 – Устройство дозирования электрической энергии.


В данном устройстве помимо квантователя погрешность вносит импульсное перемножающее устройство. Однако применяемые умножители обеспечивают превосходную статическую точность, достигающую 0,02%. Однако их полоса рабочих частот составляет всего несколько сотен Гц. В рассматриваемом умножителе один из входных сигналов изменяет длительность импульсов в последовательности, а второй – их амплитуду. После этого импульсная последовательность поступает на ФНЧ, частота среза которого намного ниже тактовой. Этот способ является радикальным с точки зрения решения всех проблем, связанных с перемножением аналоговых сигналов. Дешевизна и высокое качество многих современных микросхем ЦАП и АЦП делают его вполне доступным.

Таким образом, поскольку прочие элементы устройства дозирования электрической энергии не вносят погрешностей, то итоговая погрешность рассматриваемого устройства будет определяться суммой погрешностей квантователя по вольт-секундной площади и импульсного перемножающего устройства. Вычислим ее


δдоз.ЭЭ=δквант+δмнож=0,35387+0,02=0,37583% (4.42)


Диапазон измерения электрической энергии определяется диапазоном изменения номинальных (максимальных) токов и напряжений. Для энергии, потребляемой различными электротехническими устройствами, нижний предел диапазона измерения тока равен примерно 10-9 А, а напряжения 10-6 В. Верхний предел диапазона измерения тока равен 104 А, а напряжения – 106 В. Допускаемая погрешность измерения энергии должна находится в пределах ±(0,1-2,5)%.


4.4 Зависимость погрешности дозирования от состава технических средств комплексов дозирования


Поскольку в электротехнические комплексы дозирования помимо рассмотренных выше устройств цифрового дозирования количества электричества и электрической энергии входят также устройства коммутации и датчики тока и напряжения, то необходимо заметить, что погрешность дозирования в целом будет в значительной мере определяться погрешностями указанных устройств. Так как погрешность самих дозаторов невелика, следует уделить особое внимание выбору устройств коммутации и датчиков для того или иного электротехнического комплекса. Погрешность этих устройств не должна намного превышать значения погрешностей самих дозаторов.

Измерения токов и напряжений всегда сопровождаются погрешностью, обусловленной сопротивлением используемого средства измерения. Включение в исследуемую цепь средства измерения искажает режим этой цепи.

Из средств измерений, используемых для измерения токов и напряжений, наименьшим потреблением мощности из цепи измерений обладают компенсаторы (потенциометры), электронные и цифровые приборы.

При исследованиях приходится измерять постоянные токи в мощных энергетических установках, на предприятиях цветной металлургии, химической промышленности – токи, достигающие сотен килоампер. Для измерения токов и напряжений в таком широком диапазоне отечественной промышленностью выпускаются различные средства измерений.

Измерения больших токов и напряжений имеют свои особенности и трудности. Например, при измерении больших постоянных токов с использованием шунтов на шунтах рассеивается большая мощность, приводящая к значительному нагреву шунтов и появлению дополнительных погрешностей. Для уменьшения рассеиваемой мощности и устранения перегрева необходимо увеличивать габариты шунтов или применять специальные дополнительные меры по искусственному охлаждению. В результате шунты получаются дорогими и громоздкими. При измерении больших токов очень важно следить за качеством контактных соединений. О которым протекает ток. Плохое качество контактного соединения может не только исказить режим цепи, и, следовательно, результат измерений, но и привести к обгоранию контакта за счет большой мощности, рассеиваемой на контактном сопротивлении. При измерении больших токов могут возникать дополнительные погрешности от влияния на средства измерений сильного магнитного поля, создаваемого вокруг шин протекающим током. При измерении больших токов возникают погрешности, обусловленные спецификой этих измерений.

Из рабочих средств измерений постоянных токов и напряжений наименьшую погрешность измерений дают компенсаторы постоянного тока. Постоянные токи измеряют с помощью компенсаторов косвенно с использованием катушек электрического сопротивления. При использовании катушек электрического сопротивления типа Р324 класса точности 0,002 и компенсатора типа Р332 можно измерять токи с погрешностью не более 0,0025%. Компенсаторы используют при точных измерениях постоянных токов, ЭДС и напряжений и для проверки менее точных средств измерений. Измерения больших токов осуществляют, как правило, магнитоэлектрическими килоамперметрами с использованием наружных шунтов, а весьма больших токов – с использованием трансформаторов постоянного тока.

5. ЭКОНОМИЧЕСКИЙ РАСЧЕТ

5.1 Трудовые затраты на этапах проектирования


Таблица 5.1.

Содержание работ

Трудоемкость

Исполнитель

чел/час.

чел/мес.

1. Эскизное проектирование:

а) Подбор и изучение литературы

9.84

0.056

Инженер-конструктор 2 категории.

б) Разработка и составление принципиальной схемы

41.82

0.24

Инженер-конструктор 1 категории.

в) Проведение основных расчетов

26.6

0.153

Инженер-конструктор 1 категории.

итого (эскизное проектирование)

78.26

0.449


2.Техническое

проектирование:

а) Уточнение схемы и расчетов

10.3

0.059

Инженер-конструктор 2 категории.

б) Выполнение чертежей

53.2

0.306

Инженер-конструктор 3 категории.

в) Расчет погрешностей

24.3

0.139

Инженер-конструктор 3 категории.

итого (техническое пр-ние.)

87.8

0.504


итого (общее проектирование)

166.06

0.953


Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.