рефераты скачать

МЕНЮ


Поверхностная лазерная обработка

Титан-сапфировые лазеры. Хорошо перестраиваемый по длине волны инфракарасный лазер, используемый для генерации сверхкоротких импульсов и в спектроскопии

Лазеры на эрбиевом стекле, изготавливаются из специального оптоволокна и используются как усилители в оптических линиях связи.

Микрочиповые лазеры. Компактные интегрированные импульсные твердотельные лазеры, наиболее широко используются в сверхъярких лазерных указках

 Полупроводниковые лазерные диоды

Самый распространенный тип лазеров: используются в лазерных указках, лазерных принтерах, телекоммуникациях и оптических носителях информации(CD/DVD). Мощные лазерные диоды используются для накачки современных твердотельных лазеров.

Лазеры с внешним резонатором (External-cavity lasers), используются для создания этиловом

Лазеры с квантовым каскадом спирте или этиленгликоле. Позволяют осуществлять пререстройку длины волны излучения в диапазоне от 350 нм до 850 нм (в зависимости от типа красителя). Применение - спектроскопия, медицина (в т.ч. фотодинамическая терапия), фотохимия. высокоэнергетических импульсов

Лазеры на красителях Тип лазеров, использующий в качестве активной среды раствор органических красителей

Лазеры на свободных электронах


Расшифровка обозначений

YAG — алюмо-иттриевый гранат

KGW — калий-гадолиниевый вольфрамат

YLF — фторид иттрия-лития

















2. ПОВЕРХНОСТНАЯ ЛАЗЕРНАЯ ОБРАБОТКА

На режимах, не вызывающих разрушения материала, реализу­ются различные процессы лазерной поверхностной обработки. В основе этих процессов лежат необычные структурные и фазовые изменения в материале, возникающие вследствие сверхвысоких скоростей его нагрева и последующего охлаждения в условиях ла­зерного облучения. Важную роль при этом играют возможность насыщения поверхностного слоя элементами окружающей среды, рост плотности дислокаций в зоне облучения и другие эффекты.


2.1. Виды поверхностной лазерной обработки

В зависимости от степени развития указанных явлений в материале различают несколько видов поверхностной лазерной обработки (табл. 1), возможность реализации которых определяется основном уровнем плотности мощности излучения.        

Упрочнение без фазового перехода предполагает структурные изменения в материале при уровне плотности мощности излучения, не приводящем к расплавлению облученной зоны. При этом виде обработки сохраняется исходная шероховатость обрабатывающей поверхности. Быстрый локальный нагрев поверхности и последую­щее охлаждение за счет теплоотвода в массив материала приводят к образованию в поверхностном слое стали специфической высоко-дисперсной, слаботравящейся, дезориентированной в пространстве структуры, имеющей микротвердость, в 2—4 раза превышающую микротвердость основы (матрицы). При малых плотностях мощности, скоростях нагрева и охлажде­ния, не превышающих критических значений, может быть реали­зован режим отжига (отпуска) ранее закаленных материалов. Не­обходимость такой операции возникает, например, при изготовле­нии листовых пружин, отбортовке краев обоймы подшипника и т. п. Упрочнение с фазовым переходом предполагает плавление ма­териала в облученной зоне. Этот вид упрочнения требует более вы­сокой плотности мощности излучения, что позволяет добиться зна­чительных глубин упрочненного слоя. Поверхность этого слоя име­ет характерное для закалки из жидкого состоянии дендритное строение. Затем идет ЗТВ, а между ней и материалом основы рас­положена переходная зона. При данном виде поверхностной обра­ботки, естественно, нарушается исходная шероховатость,    что требует введения в технологический процесс изготовления изделия до­полнительной финишной операции (шлифования).

При реализации рассмотренных видов обработки не требуется специальной среды, процесс проводится на воздухе. При этом воз­можна частичная диффузия составляющих воздуха в облученную зону.

При следующем виде поверхностной обработки — лазерном ле­гировании для насыщения поверхностного слоя легирующими эле­ментами требуется специальная среда (газообразная, жидкостная, твердая). В результате на обрабатываемой поверхности образует­ся новый сплав, отличный по составу и структуре от матричного материала.




Виды поверхностной лазерной обработки                                                            Таблица 1

Вид  обработки

плотность мощности

1 см 2

 

 

скорость охлаждения

С

 

 

глубина ЗТВ,мм

Упрочнение без фазового

перехода

103-104

104-105

0,2-0,5

Лазерный отжиг (отпуск)

102-103

-

0.05-0,1

упрочнение с фазовым

переходом

104-105

105-106

1,2- З.0

лазерное легирование

104-106

104-106

 0,2-2,0

Лазерная      наплавка (напыление)

104-106

104-106

0,02-3,0

Амортизация поверхности

106-108

104106

0,01-0,05

шоковое упрочнение

104-106


104-106

0,02-0,2


Лазерная наплавка (напыление) позволяет нанести па поверх­ность обрабатываемого материала слой другого материала, улуч­шающий эксплуатационные характеристики основного.

Новая разновидность лазерного упрочнения — аморфизация поверхности сплава в условиях скоростного облучения (очень ко­ротким импульсом или сканирующим лучом). Сверхвысокие скоро­сти теплоотвода, достигаемые при этом, обеспечивают своеобраз­ное «замораживание» расплава, образование металлических сте­кол (метгласса) или аморфного состояния поверхностного слоя. В результате достигаются высокая твердость, коррозионная стой­кость, улучшенные магнитные характеристики и другие специфи­ческие свойства материала. Процесс лазерной аморфизации можно осуществить при обработке сплавов специальных составов (в том числе и на основе железа), а также других материалов, предвари­тельно покрытых специальными составами, которые самостоятель­но или совместно с матричным материалом склонны к аморфиза­ции.

Шоковое упрочнение имеет место при воздействии на материал мощного импульса излучения наносскундной длительности. Пред­варительно на материал наносится тонкий слой легкоплавкого ме­талла. Воздействие мощного импульса вызывает взрывообразное испарение легкоплавкого металла, что приводит к возникновению импульса отдачи, в свою очередь генерирующего мощную удар­ную волну в материале. В результате происходит пластическое деформирование материала, а при нагреве поверхностного слоя-— и соответствующие изменения в структуре. Первые четыре вида поверхностной лазерной обработки к на­стоящему времени получили наибольшее распространение. Для практической реализации аморфизации и шокового упрочнения требуются дополнительные исследования. Все эти виды обработки можно осуществить с помощью как импульсного, так и непрерыв­ного излучения, причем упрочнение без фазового перехода более пригодно для прецизионной обработки поверхностей сравнительно небольших размеров, производительность процесса ограничивает­ся сравнительно невысокой частотой следования импульсов выпускаемого оборудования. Непрерывное излучение позволяет произ­водить обработку с высокой производительностью поверхностей больших размеров.


2.2. Обработка импульсным излучением

При фокусировании излучения сферической оптикой облученная. зона в плане имеет вид круга диаметром D. Тогда в случае однокоординатной (линейной) обработки скорость упрочнения оп­ределяется из выражения

        

, где   D длина участка упрочнения; t -время обработки;    п -число импульсов; K0 — коэффициент перекрытия; f — частота следования  импульсов.

При двух координатной обработке одними из основных пара­метров является шаг s относительного перемещения по оси х и шаг s' перемещения по оси у. От соотношения этих шагов и диа­метра зоны облучения зависят степень заполнения (упаковки) профиля, эффективность процесса. Обработка может быть реали­зована по одной из четырех схем (табл. 2). Эффективность обра­ботки по схеме характеризуется коэффициентом использования импульсов Ки, который определяется из соотношения

где F' — площадь облученной поверхности.

Производительность процесса двухкоординатной обработки

Это выражение может быть использовано для ориентировочной оценки производительности, так как реальные условия вносят свои коррективы. Например, при D = 4 мм, Ки—0,74 (см. табл. 4, схе­ма 3)    и  f =1    Гц    производительность    упрочнения    составит  550 мм2/мин.

К технологическим характеристикам упрочнения импульсным излучением относятся размерные параметры (диаметр единичной зоны упрочнения, ширина линейного упрочнения, глубина упроч­ненной зоны), степень упрочнения (микротвердость), шерохова­тость обработанной поверхности и др. Па эти характеристики влия­ют вид обрабатываемого материала, схема обработки, энергети­ческие параметры облучения, эффективность поглощения излучения,  среда и т. п. Так, с увеличением плотности мощности излучения q возраста­ет - как ширина В (диаметр единичного пятна D), так и глубина И зоны линейного упрочнения. Однако для каждого вида материалов существует некоторое пороговое значение q, после которого начинается разрушение (эрозия) материала.

        Схемы поверхностной обработки импульсным излучением          Таблица 2

Номер схемы

схема

характеристика

1

Ки =1

Ки =0,78

s=s'=D

2

Ки =0,7

Ки =0,46

s=s'=0,7D

3

Ки =0,74

s=0,8D

s'=0,74D


4

Ки =0,8

Ки =0,78

s=s'=0,8D






























Повышение эффективности упроч­нения может быть достигнуто уве­личением поглощательной способ­ности материала при обработке импульсным инфракрасным излучением {X — 1,06 мкм). Для этого используют покрытие, например, кол­лоидный раствор графита, или пред­варительную химическую обработку облучаемой поверхности раствором па основе пикриновой кислоты. Глу­бина упрочнения зависит от вида материала (марки стали) и в мень­шей степени от окружающей среды. В закаленных сталях глубина упрочнения при одних и тех же ус­ловиях облучения на 30 — 60% больше, чем в отожженных сталях. Степень упрочнения также зависит как от вида материала, так и от его исходного состояния. Для закаленных сталей уровень уп­рочнения выше, чем для отожженных.

При реализации линейного упрочнения обработка обычно ве­дется с перекрытием зон лазерного воздействия. В перекрытых участках происходит отпуск огнеупрочненного материала в ре­зультате действия последующего импульса. В результате в попе­речном сечении упрочненный слой представляет собой характер­ную «чешуйчатую» структуру. При двухкоординатном упрочнении дополнительное перекрытие несколько усложняет происходящие в зоне обработки процессы. В частности, это проявляется в узловых точках, где материал четы­режды подвергался облучению.

В фактуре поверхности также обнаруживается характерная «чешуйчатость». Центральную и основную часть каждого пятна за­нимает слаботравящаяся зона с твердостью до 13000 МПа. От­сутствие в этой зоне карбидов показывает, что температура на­грева здесь существенно превышала критическую точку, в резуль­тате чего все карбиды растворились в аустеннте. По окончании ла­зерного импульса при последующем быстром охлаждении за счет теплоотвода в массив материала в этой зоне произошла полная закалка с образованием мартеиситной структуры, обладающей высокой твердостью.

Значительная часть аустенита при этом сохранилась вследствие большого содержания и нем углерода и хрома, которые перешли в твердый раствор при нагреве до высоких температур. Однако этот остаточный аустенит испытал в процессе закалки фазовый наклеп, усиленный вследствие локального и импульсного характе­ра термического никла, поэтому    обладает высокой    твердостью.

Концентрично с первой расположена вторая зона, занимающая периферийную часть пятим и обладающая более сильной травимостыо и несколько меньшей твердостью (8000—10000 МПа). Невозможна также обработка сканирующим излучением с ампли­тудой  сканирования. Тогда производительность обработки будет зависеть от величины  и скорости перемещения заготовки: . Другие закономерности упрочнения сталей непрерывным излучением во многом подобны рассмотренным закономерностям обработки импульсным излучением. Параметры (ширина, площадь упрочненной зоны, глубина упрочнения), имеющие размерность, степень упрочнения, шероховатость обработанной поверх­ности зависят как от плотности мощности излучения и скорости обработки, так и от вида обрабатываемого материала. Важную роль при этом также играет вид поглощающего покрытия, нано­симого на поверхность для повышения эффективности обработки.На сегодняшний день разработано и используется большое многообразие поглощающих покрытий: фосфатные, хромовые, коллоидные растворы, графит, различные краски, оксиды металлов, силикаты и пр. Если для сравнительной оценки покрытий ис­пользовать критерий эффективности поглощения излучения  kп= hu/ho , где hu ho, — глубина зоны термического влияния соот­ветственно с покрытием и без него, то ряд предпочтительности покрытий будет иметь следующий вид:

Таблица 3

Покрытие

С r

Cd

С

ZnO

Zn3(PO4)2

Si02  Al2O3

С

FeO4

 

0,6

2,0

3.0

4.5

5,1

6.5

6.7

Неотъемлемой структурной составляющей этой зоны являются карбидные частицы. В отличие от первой данная зона имеет неодно­родное строение, причем степень неоднородности выше там, где вторая зона перекрывает первую, образовавшуюся в соседнем пят­не нагрева, тогда как на границе с исходной структурой она мень­ше. Структура этой зоны — мартенсит, остаточный аустенит и карбиды, не растворившиеся полностью.

В узловых точках (участки прямоугольной формы) там, где четыре зоны лазерного воздействия перекрывают друг друга, мате­риал сильно травится, и его твердость составляет 5000—5500 МПа, что характерно для трооститной структуры. Такие участки появля­ются вследствие многократного отпуска ранее возникших струк­тур закалки при последовательном воздействии на материал ряда импульсов.

Шероховатость обработанной поверхности при упрочнении в ре­жиме проплавления зависит от схем обработки, коэффициента пе­рекрытия, уровня плотности мощности излучения. Так, минималь­ная шероховатость имеет место при 0,6>Ku>0,8 Низкая шерохо­ватость поверхности достигается при невысоких плотностях мощ­ности излучения (для стали, например, q = 50-100 кВт/см2). Однако следует учитывать, что при малой плотности мощности обеспечиваются и небольшие размеры зоны упрочнения.

Для выбора режимов упрочнения импульсным излучением можно пользоваться номограммами, построенными на основании экспериментальных иcследований.


2.3. Обработка непрерывным излучением


Наиболее распространенная схема обработки — однодорожечное упрочнение. В зависимости от траектории перемещения луча или закона перемещения заготовки конфигурация упрочненного участка поверхности может иметь различный вид. Производитель­ность П обработки зависит от скорости v относительного переменность П обработки зависит от скорости v относительного переме­щения луча и поверхности, а также от ширины зоны В: П = vB-   если же параллельно наносится несколь­ко дорожек упрочнения, то произ­водительность также зависит от их числа и коэффициента перекрытия или шага обработки. Из рис видно, как изменяется микротвер­дость но длине L обрабатываемой зоны в зависимости от степени пе­рекрытия (шага s) дорожек упроч­нения. Как и при импульсной обра­ботке, в перекрытых зонах наблю­дается существенное снижение ;твердости в  результате .

Рис. 3 зависимость микротвердости П   от шага обработки s

отпуска ранее закаленного материала

Однородность и толщина покрытия являются важными факто­рами обеспечения качественного упрочнения. Оптимальная толщина покрытия — 20—50 мкм. Слишком тонкое покрытие снижает глубину упрочнения вследствие быстрого испарения, увеличение также толщины выше указанных значений приводит к неоднородности результатов обработки — образованию как оплавленных, так и недостаточно прогретых участков поверхности.

Наибольшее влияние на изменение размерных параметров упрочнения оказывает плотность мощности излучения. С увеличени­ем плотности мощности растет глубина ЗТВ, что связано с ростом подводимой к материалу удельной энергии. Скорость обработки очень сильно влияет на размерные параметры упрочнения. С ростом скорости, относительного перемещения излучения и обрабатываемой поверхности снижаются как глубина, так и ширина упрочненной зоны.

Увеличение скорости обработки также влияет на изменение микротвердости в упрочненном слое. Так, с увеличением скорости   до 6.0 м/мин изменение микротвердости может достигать 400 МПа.

При упрочнении в режиме проплавления материала шероховатость обработанной поверхности резко возрастает с ростом плотности   мощности    излучения,   доходит   до   максимума    при   q =50 кВт/см2, а затем начинает постепенно снижаться.   При опти­мальных режимах обработки Rz =10-20 мкм.

Большое влияние на шероховатость поверхности оказывает скорость обработки. При малых значениях скорости шероховатость довольно велика (Rz=20 мкм), однако с увеличением v шерохо­ватость снижается (при v=8 м/мин Rz=5-8 мкм).

При выборе режимов обработки для ориентировочной оценки глубины упрочненного слоя можно использовать теоретические зависимости, полученные на основе решения уравнения теплопро­водности для определенных условий облучения. При этом исходят из положения, что в процессе упрочнения температура поверхно­сти To.o.t должна быть больше температуры закалки T:зак, но не вы­ше температуры плавления Тпл

Максимальные размеры зоны упрочнения по осям Оy и Oz при Т (у, z, t) = Тзак,- определяютея из выражий


,

Где — коэффициент температуропроводности, здесь к — коэффициент теплопроводности; с и v — теплоемкость и плотность материала; r — радиус сфокусированного пятна; v — скорость об­работки; Ln — удельная теплота плавления; Ро=АР — эффектив­ная мощность лазерного теплового источника, здесь А — поглощательная способность материала; Р — мощность лазерного излу­чения.

Во многих случаях для выбора режимов обработки уста на вли­ваются экспериментальные зависимости, позволяющие в практи­ческих условиях для конкретных материалов оценить параметры процесса. На рис. II показана номограмма для выбора режимов упрочнения инструментальных сталей. Исходными данными Для номограммы являются требуемые микротвердость и глубина уп­рочненного слоя. В качестве энергетического параметра не пол v. гу­стея плотность энергии излучения где t — время воздействия лазерного излучения. По    зависимостям  и           устанавливаются плотность энергии излучения, соответствующая заданным h и H В зависимости от возможностей технологического оборудования и с учетом обеспечения максимальной производительности выбива­ются мощность излучения, диаметр пятна фокусирования и опре­деляется достигаемая плотность мощности излучения. По установ­ленным We и q определяется длительность воздействия излучения.

Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.