рефераты скачать

МЕНЮ


Электричество и магнетизм

Клеммы соленоида выведены на переднюю панель осциллографа.

Ток соленоида устанавливается реостатом и измеряется амперметром. Индукция магнитного поля на оси соленоида определяется по формуле:

B=μ0NI/2L  (cosφ1  -cosφ2),                                   (11)

где N и L –число витков и длина соленоида соответственно, а φ1 и  φ2- углы, показанные на рисунке 7. Как видно из рисунка:

Тогда формула 11 перепишется в виде:

                                                                    (12) 

  2.  Метод магнетрона

    В настоящей работе для определения удельного заряда электрона используется магнетрон с цилиндрическими катодом и анодом. Радиус катода а=0.9 мм, анода-b=9,6 мм. Cхема включения лампы приведена на рис.8.

Лампа помещена внутрь соленоида. Питание соленоида осуществляется от источника постоянного тока.

3.Газоразрядная трубка.

Для питания электронной пушки и водородного генератора  газоразрядной трубки служит источник  постоянного тока ВУП-2 (включение через октаэдный разъем). Для создания однородного магнитного поля на катушки Гельмгольца подается напряжение от источника постоянного тока ИЭПП-1. Ток, подаваемый на катушки Гельмгольца, контролируется амперметром и вольтметром.


Проведение эксперимента

 Определение удельного заряда электрона методом магнитной фокусировки

1.                 Собрать схему питания соленоида по рис. 7.

2.                 Включить осциллограф в сеть переменного тока и получить на экране трубки светящееся пятно.

3.                 Включить питание соленоида, и постепенно увеличивая ток, добиться того, чтобы изображение на экране стянулось в точку. При этом шаг винта движения электронов будет равен расстоянию  ℓ от центра пластин до экрана трубки. Записать значение тока, текущего при этом через соленоид.

4.                 По формуле 12 вычислить магнитную индукцию В, а по формуле 8 – удельный заряд электрона.

5.                 Формула 8 справедлива для случая, когда электроны проходят 1 виток спирали. Если в опыте, после первой фокусировки электронов, увеличивать ток соленоида, на экране изображение будет размываться, а затем снова соберется в светящуюся точку и так далее. Второе прохождение электронов под влиянием магнитного поля через фокус происходит в том случае, когда электроны на пути от отклоняющих пластин к экрану проходят 2 витка спирали. Плавно увеличивая ток, получит вторую и третью фокусировки пучка электронов на экране, записать значение токов. Для каждого случая вычислить магнитную индукцию и удельный заряд, учитывая изменения шага винта движения электронов.

6.                 Рассчитать относительную и абсолютную ошибки полученных результатов по отношению к табличным данным.

Примечания: для расчета искомых величин использовать следующие данные: U = 450 В;  N=1000 витков; L = 8 см, r= 3,5 см, ℓ =9 см

 Метод магнетрона

1.   Установить магнетрон в середину соленоида;

2.   Схему  (рис. 8) включить в цепь переменного тока;

3.   Установить с помощью потенциометра R1 анодное напряжение 0,5 -1,5 В. Прогрев лампы и установление анодного тока длятся 3-5 мин.

4.   Включить источник тока; 

5.   Подать на соленоид напряжение от источника постоянного тока В-24. Изменяя ток соленоида от 0 до 10 А, исследовать зависимость Ia=f(I) при трёх фиксированных значениях анодного напряжения.

6.   Данные измерений занести в таблицу 1:


Таблица 1

№№

      Ua1=

        Ua2=

        Ua3=

I, A

Iа ,мкА

  I, A

 Ia, мкА

I,A

 Iа,мкА

 

7.   Построить кривые зависимости анодного тока Ia лампы от тока соленоида I при фиксированных значениях анодного напряжения, в результате чего получить сбросовые характеристики;

8.   Для каждого значения анодного напряжения определить значения силы тока в соленоиде Iкр, при которых кривые Ia=f(I) круто падают. Наиболее правильно брать значения Iкр из верхней части участка спада сбросовой характеристики;

9.   Используя найденные значения тока Iкр, вычислить критические значения магнитной индукции по формуле (11);

10.            Вычислить по формуле 9 отношение e/m для разных значений анодного напряжения Ua. Найти среднее значение <e/m>. Оценить ошибки измерения.

Эксперименты с применением газоразрядной трубки

1.   Включить источник питания газоразрядной трубки ВУП-2 в цепь переменного тока.  Через 5 минут появляется электронный луч, которой хорошо виден в полностью затемнённом помещении;

2.   Включить источник питания катушек Гельмгольца  ИЭПП – I в цепь переменного тока;

3.   Газоразрядную трубку с помощью поворотного устройства расположить так, чтобы получить электронный пучок в виде винтовой линии.  Меняя напряжение на аноде и ток, подаваемый на катушки Гельмгольца, сделать вывод о зависимости шага винтовой линии от этих параметров;

4.   Газоразрядную трубку расположите так, чтобы электронный пучок был направлен параллельно виткам катушек, при этом светящийся пучок примет вид кольца;

5.   Измерьте радиус кольца с помощью приспособления, состоящего из полупроводникового лазера и специального измерительного устройства, обеспечивающего перемещение луча лазера в двух взаимно перпендикулярных направлениях. Для этого направляющую пластину, вдоль которой перемещается лазер, установите строго параллельно плоскости кольца, при этом луч лазера будет направлен перпендикулярно  этой плоскости.  Перемещайте лазер с помощью микрометрической подачи, так чтобы его луч поочередно пересекал кольцо в точках, находящихся на концах его диаметра. Для более удобного совмещения точек пересечения лазером кольца и экрана, установленного по другую сторону колбы, лазер снабжен выступом  (“мушкой”) на конце его цилиндрического корпуса. Измерения проведите несколько раз и найдите  среднее  значение радиуса кольца;

6.   Измерьте радиус катушек Гельмгольца;

7.   Данные измерений занесите в таблицу 2 и определите значение удельного заряда электрона по формуле (10);

8.   Оцените погрешность полученных результатов.

Примечание: вектор магнитной индукции определяют с помощью измерителя индукции или по формуле:

,                                        (13)

где  - сила тока в катушках, А,  – = 445 число витков, – радиус катушек,

 Гн/м - магнитная постоянная.


Таблица 2

N

U,В

r, м

I,A

R, м

N

B,Тл

e/m




Контрольные вопросы

 

1.                 Движение заряженных частиц в электромагнитном поле.

2.                 Сила Лоренца, правило определения направления силы Лоренца.

3.                 Удельный заряд электрона и методы его определения.

4.                 Магнетрон.  Метод определения удельного заряда с помощью магнетрона.

5.                 Определение удельного заряда по методу магнитной фокусировки.

6.                 Определение удельного заряда с помощью газоразрядной трубки.

7.                 Вывести формулы для определения удельного заряда методом магнетрона и газоразрядной трубки.

8.                 Вывести формулу для определения удельного заряда методом магнитной фокусировки.

9.                 Что такое сбросовая характеристика и как по ней определяется критический ток?


Литература, рекомендуемая к лабораторной работе:

 

1.                 Калашников С.Г. Электричество. – М.: Наука, 1977.

2.                 Савельев И.В. Курс общей физики. Т.2, Т. 3. – М.: Наука, 1977.

3.                 Телеснин Р.В., Яковлев В.Ф. Курс физики. Электричество.-М.: Просвещение, 1970.

4.                 Сивухин Д.В. Общий курс физики. Т.3. Электричество.- М.: Физматлит МФТИ, 2002.

5.                 Иродов И.Е. Электромагнетизм. Основные законы. –М.- С.-П.: Физматлит Невский диалект, 2001

6.                 Зильберман Г.Е. Электричество и магнетизм. – М.: Наука, 1970.

7.                 Парсел Э. Курс физики Т.2 Электричество и магнетизм – М.: Наука, 1971.

8.                 Физический практикум. Электричество. Под редакцией В.И. Ивероновой. – М.: Наука, 1968.

9.                 Кортнев А.В., Рублев Ю.В., Куценко А.Н.. Практикум по физике. – М.: Высшая школа, 1965.

10.            Руководство к лабораторным занятиям по физике. Под редакцией Л.Л. Гольдина, - М.: Наука, 1983.

ЛАБОРАТОРНАЯ РАБОТА №12

ПОЛУЧЕНИЕ КРИВОЙ НАМАГНИЧИВАНИЯ И ПЕТЛИ ГИСТЕРЕЗИСА С ПОМОЩЬЮ ОСЦИЛЛОГРАФА

Цель работы:

Получить экспериментальную зависимость магнитной индукции от напряженности магнитного поля, определить коэрцитив­ную силу, остаточную  индукцию  и  построить  график зависимости магнитной проницаемости от напряжённости магнитного поля.

Идея эксперимента:

Исследуемым веществом является железо, из которого изготовлен тороид с двумя обмотками. Индукция магнитного поля внутри полого тороида,  равна:

,                                        (1)

где n1 – число витков на один сантиметр длины первичной обмотки, I1 – ток, подаваемый на первичную обмотку тороида.  Магнитная индукция связана с напряженностью соотношением:

                                                 (2)

Из формулы (1) и (2) получаем, что напряженность магнитного поля

     ,                                              (3)

где  N1 – полное число витков первичной обмотки, l- длина средней линии тороида   При прохождении переменного тока по первичной обмотке тороида  во вторичной обмотке наводится э.д.с. индукции

,

где S - площадь сечения тороида, N2 - число витков во вторичной обмотке, В - индукция в образце.

Чтобы по­лучить на экране осциллографа петлю  гистерезиса, нужно на

горизонтально отклоняющие пластины подать напряжение Ux, пропорци­ональное  напряженности Н магнитного поля в образце, а на вер­тикально  отклоняющие  пластины - напряжение  Uy, пропорциональ­ное  магнитной  индукции  В. За один  период  синусоидального  изменения  тока след элект­ронного луча на экране  опишет  полную  петлю  гистерезиса, а за каждый  последующий  период в точности  её  повторит. Поэтому на экране будет видна неподвижная петля  гистерезиса. Изменяя напря­жённость поля Н, можно получить на экране  последовательно ряд различных по своей площади  частных петель гистерезиса. Верхняя точка петли гистерезиса находится на кривой намагничивания. Сле­довательно, для построения начальной кривой намагничивания необ­ходимо снять с осциллограмм  координаты  вершин nx и ny петель гистерезиса, а значения Н  и  В  вычислить по формулам (4), (5).

           ,                                                 (4)

где  Iэфф - эффективное значение тока, измеряемое амперметром (а на экране осциллографа мы видим амплитудное значение Н);

    ,                                           (5)


где Uy - амплитудное  значение напряжения, определяемое с помо­щью осциллографа по положению калиброванного указателя УСИЛЕНИЕ У  (вольт/дел.).


Теоретическая часть

Всякое вещество является магнетиком, т.е. оно способно под действием магнитного поля приобретать магнитный момент (намагничиваться). Для характеристики  магнитных свойств разных веществ вводят понятие магнитной восприимчивости  χ, определяющей величину намагничения единицы объема вещества. В зависимости от знака и величины магнитной восприимчивости все магнетики разделяют на три группы: 1. диамагнетики, у которых χ отрицательна и мала по абсолютной величине;                                    2. парамагнетики, у которых χ тоже невелика, но положительна; 3. ферромагнетики, у которых χ  положительна и достигает очень больших значений. Кроме того, в отличие от диа- и парамагнетиков, для которых χ постоянна, магнитная восприимчивость ферромагнетиков является функцией напряженности магнитного поля.

Кривая намагничивания.

Характерной особенностью ферромагнетиков является сложная нелинейная зависимость между индукцией В и напряженностью Н. Эта зависимость была установлена А.Г.Столетовым на примере железа. Зависимость индукции В от напряженности магнитного поля Н ферромагнетика имеет вид, показанный на рис. 1   Индукция сначала быстро увеличивается, но по мере намагничивания ферромагнетика, ее нарастание замедляется. По значениям индукции В и напряженности поля Н можно определить намагничение магнетика  (магнитный момент единицы объема). Характер зависимости I(H) для ферромагнетиков изображен на рис.2. Намагничение  J, подобно индукции, сначала быстро возрастает, но затем наступает магнитное насыщение, при котором намагничение достигает некоторого  максимального значения Js и практически перестает зависеть от напряженности поля.

Вследствие нелинейной зависимости B(H) магнитная проницаемость         μ =B/ μ0H   зависит от напряженности магнитного поля. Кривая зависимости      μ (H) (рис. 3) возрастает с увеличением поля от начального значения до некоторой максимальной величины μmax, но затем, после прохождения через максимум, μ уменьшается и асимтотически стремится к значению очень му к нице.

Магнитная восприимчивость ферромагнетика χ =J/H оказывается также непостоянной и зависящей от напряженности поля. Она имеет максимум и при больших полях асимтотически стремится к значению близкому к нулю.

Гистерезис

Положим, что мы намагничиваем первоначально ненамагниченный ферромагнетик и, поместив его внутрь намагничивающей катушки, увеличиваем магнитное поле внутри магнетика от нуля до некоторого значения H1 (рис. 4).  Значение индукции в магнетике будет определяться отрезком О1 кривой индукции О1А и изобразится отрезком ординаты ОВ1. Если теперь вновь уменьшать магнитное поле, то уменьшение индукции будет изображаться уже не отрезком кривой индукции 1О, а кривой 1В’, и когда поле станет равным нулю, индукция  будет равна не нулю, а ОВ'.  Ферромагнетик в этом состоянии будет являться постоянным магнитом. Если, далее, изменить направление тока в намагничивающей катушке и перемагничивать образец в обратном направлении, то изменение индукции опишется отрезком кривой В' 2. При последующем изменении поля в обратном направлении индукция будет изменяться в соответствии с кривой В''1. При циклическом перемагничивании ферромагнетика изменение индукции в нем изобразится петлеобразной замкнутой кривой 1В'2В''1.

Мы видим, что значение индукции в ферромагнетике определяется не только существующим магнитным полем, но еще зависит от предыдущих состояний намагничивания.

Происходит своеобразное отставание изменения индукции от изменения напряженности поля. Это явление получило название магнитного гистерезиса, а указанная выше петлеобразная кривая зависимости В(Н) при циклическом перемагничивании называется петлей гистерезиса. Из кривых на рис.4  видно, что при устранении намагничивающего поля ферромагнетик сохраняет остаточное намагничение, причем внутри магнетика существует некоторая остаточная индукция В0 (рис. 4).  Чтобы уничтожить это остаточное намагничение, внутри ферромагнетика необходимо создать определенное поле, направленное против первоначального намагничивающего поля, изображенного отрезком ОНк. Это поле называется задерживающей или коэрцитивной силой ферромагнетика.

Гистерезис зависит от состава ферромагнетика и его обработки. Для чистого мягкого железа, т.е. отожженного и затем медленно охлажденного, гистерезис выражен слабо и петля гистерезиса очень узка. У закаленной стали гистерезис значителен и петля гистерезиса широкая.

Температура Кюри

Способность ферромагнетиков намагничиваться различна при разных температурах, т.е. их магнитная восприимчивость зависит от температуры. При повышении температуры способность ферромагнетиков намагничиваться уменьшается. При этом падают значения их магнитной восприимчивости и проницаемости при любом значении магнитного поля, ослабляется гистерезис и уменьшается намагничение насыщения Js. При некоторой температуре Тк, называемой температурой Кюри, ферромагнитные свойства исчезают. Температура Кюри различна для разных ферромагнетиков. Например, для кобальта Тк=1323 К, для железа Тк=1043 К, для никеля – 633 К, для гадолиния – 290 К

При температурах выше температуры Кюри, ферромагнетик  становится  парамагнетиком. Зависимость магнитной восприимчивости χ от температуры  для таких парамагнетиков подчиняется закону Кюри-Вейсса, который имеет вид:

,

где С – постоянная, зависящая от рода вещества, ТК – температура Кюри.

Экспериментальная установка

Для  получения  петли  гистерезиса на экране осциллографа ис­пользуется установка, схема которой приведена на рис. 5.

Первичная  обмотка тороида  питается от источника В-24 через сопротивление R1 переменным  током I1 . Напряжение, подаваемое с резистора R1 на горизонтально отклоняющие пластины, с учётом формулы (3) равно

Таким образом, напряжение Ux, подаваемое на горизонтально от­клоняющие пластины, пропорционально Н.

Чтобы напряжение, подаваемое на вертикальный вход осциллографа, было пропорционально индукции магнитного поля В, между вторичной обмоткой и осциллографом ставят интегрирующую цепочку из сопротивления  R2, которое подбирается на магазине сопротивлений Р-33 и конденсатора С с магазина емкостей, удовлетворяющую условию, что R2>>1/ωC. Тогда сопротивле­нием конденсатора переменному току можно пренебречь, и сила тока I2 в цепи вторичной обмотки  равна:

.                                           (6)

Напряжение  на  конденсаторе

                                        (7)

Подставляя значение силы тока (6) в формулу (7), получим

Таким образом, на вертикальный вход осциллографа подается на­пряжение Uy, пропорциональное значению магнитной индукции В.


Проведение эксперимента.


1.                 Собрать схему по рис. 2.

2.                 После проверки схемы включить осциллограф в сеть.  Устано­вить необходимую яркость и оптимальную резкость электронного лу­ча. Вывести луч в центр координатной сетки.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.